A Methodology to implement Process-Based Manufacturing Cost Models Into The Traditional Performance-Focused Multi-Disciplinary Design Optimization

Contributors:

H. P. Bao*, H. J. Dunn**,

J. L. Rogers**, J. A. Samareh**

*Old Dominion University

** MultiDisciplinary Optimization Branch (MDOB), NASA Langley Research Center

Overview

- Design Space
- Process-Based Life Cycle Cost Modeling (PBLCCM)
- Cross-platform implementation
- Optimization using genetic algorithm (GA)

Design Space

We plan to focus on the use of process-based cost modeling in design and optimization.

Process-Based Life Cycle Cost Modeling (PBLCCM)

We believe the lessons learned in the process-based cost modeling (PBCM) for manufacturing will be applicable to other disciplines when their PBCM are matured.

Cost Consideration

- In the past cost was derived from structural Weight.
- Current cost modeling tools allow processbased manufacturing and Assembly costs (PBMAC) of aircraft to be included in the conceptual design phase
- MDOB has demonstrated the use of a PBMAC modeling tool with a performance analysis tool for cost-performance optimization (AIAA 2000-4839)

Cost Models

1. Learning Curve:

 Basic Tenet: There is a relatively constant percentage reduction in the cost, or manhour, for doubled quantities of production

Examples of Power Law Models

- From ACCEM applied to hand lay-up:
 - Position template and tape down:

 $0.000107 \ area^{0.77006}$

• 12 in. manual ply deposition:

$$0.05 + plies (0.001454 length^{0.8245})$$

Transfer layup to curing tool:

$$0.000145*(area)^{0.6711}$$

Stretch flange:

```
plies*(length*0.064*radius^{-0.5379}*flange^{0.7456})
```

First Order Velocity Model

- Background:
 - NASA/Boeing Advanced Technology Composite Aircraft Structures (ATCAS) Initiative (Contract NAS1-18889)
 - MIT's Laboratory for Manufacturing and Productivity
 - Ph.D. Thesis: "Adaptive Framework for Estimating Fabrication Time", E.T. Neoh, MIT 1995

First Order Velocity Response

- Advantages of above formulation of process speed:
 - Amenable to physical modeling
 - V₀ and Tau have meaningful physical interpretation

First Order Model (Continued 1)

 The three approximations to the Exponential First Order equation:

First Order Model (Continued 2)

Validation of Model (Neoh 95):

MDOB

First Order Model (Continued 3)

Sample Process time estimation:

Process	Tau	V ₀	Design Feature
Hand lay-up 3 "tape	0.0191 hrs	10950 in/hr	Length
Hand lay-up 12" tape	0.0111 hrs	1896 in/hr	Length
Hand lay-up woven tape	0.0856 hrs	57500 in ² /hr	Area
Disposable bagging	0.0331 hrs	5137 in ² /hr	Area
Reusable bagging	0.0092 hrs	6219 in ² /hr	Area

First Order Model (Continued 3)

Estimation of process time for commercial airframe structures:

Material	Item	V ₀	Tau, min	Design feature
Aluminum	Skin Fabrication	3.024	3.1123E+04	Wetted area, in ²
	Rib Fabrication	2.059	4.1423E+04	Wetted area, in ²
	Spar Fabrication	2.462	3.6934E+04	Wetted area, in ²
Alc	Wing Assembly	0.0395	2.1341E+04	Perimeter, in
Composite	Skin Fabrication	2.1447	4.3883E+04	Wetted area, in ²
	Rib Fabrication	0.8236	1.0356E+05	Wetted area, in ²
	Spar Fabrication	1.4485	6.2788E+04	Wetted area, in ²
	Wing Assembly	0.02826	2.9877E+04	Perimeter, in

First Order Model (Continued 4)

- Cost Estimation of Generic wing
 - Physical elements:
 - Front and Rear spars
 - Five ribs
 - Skins
 - Process Costs Include:
 - Fabrication of Spars
 - Fabrication of Ribs
 - Fabrication of Skins
 - Assembly of Spars, Ribs, and Skins into Wing

Cost Estimation of Generic Wing: Solid Model

Cost Estimation of a Generic wing: Parametric Model

Cost Estimation of a Generic Wing: Aluminum

Cost estimation of a Generic Wing: Composite Material

Cost Optimization Process

Diagram

Cost Estimation of a Generic wing: Optimization for Aluminum Wing

Summary

- First Order Velocity Model appears to be a good model for the following reasons:
 - Based on physical parameters
 - Has been validated in a number of studies
 - Can be readily integrated with current automated optimization codes

Cost-Performance Integration

- Commercial cost tools are developed for the PC environment
- Traditional analysis and optimization tools are developed for the Unix environment
- CORBA has been used to interface the PC-based applications with the UNIXbased applications.

Unix to Excel Interface Using CORBA

Cost Optimization with a Genetic Algorithm

- Create and assess a large number of alternative designs rapidly and automatically
- Alternative designs provide a better understanding of the design space and can answer important questions about cost, weight, concept arrangement and layout, and ability to meet the requirements

Cost Optimization with a Genetic Algorithm

- A baseline structural model for a conceptual wing design was created
 - Model contains 7 design variables representing planform and section design variables
 - Optimization problem seeks to minimize the wing manufacturing cost subject to 3 geometric constraints such as the total wetted surface area
 - Optimization problem is solved with a genetic algorithm (GA), implemented with the commercial add-in Evolver® attached to the Microsoft® Excel spreadsheet that contains the cost data. The cost data are taken from a process-based cost model tied to the design variables.

Cost Optimization of an Aircraft Wing Genetic Algorithms Identify Numerous Local Minima

